Quadrilaterals Ex-8.2 (solved exercise) Class-9 by-Ashish Jha

Question 1.
$A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and DA (see figure). AC is a diagonal. Show that
(i) $S R$ || $A C$ and $S R=12 A C$
(ii) $P Q=S R$
(iii) PQRS is a parallelogram.

Solution:

(i) In $\triangle A C D$, We have
$\therefore S$ is the mid-point of $A D$ and R is the mid-point of $C D$.
$S R=12 A C$ and $S R \| A C . .(1)$
[By mid-point theorem]
(ii) In $\triangle A B C, P$ is the mid-point of $A B$ and Q is the mid-point of $B C$.
$P Q=12 A C$ and $P Q|\mid A C . . .(2)$
[By mid-point theorem]
From (1) and (2), we get
$P Q=12 A C=S R$ and $P Q|\mid A C \| S R$
$\Rightarrow P Q=S R$ and $P Q \| S R$
(iii) In a quadrilateral $P Q R S$,
$P Q=S R$ and $P Q \| S R$ [Proved]
\therefore PQRS is a parallelogram.
Question 2.
$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral PQRS is a rectangle.
Solution:
We have a rhombus $A B C D$ and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and DA respectively. Join AC.

NCERT Solutions for Class 9 Maths Chapter 8 Quadrilaterals Ex 8.2 A2 In $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$ respectively.
$\therefore P Q=12 A C$ and $P Q \| A C . .(1)$
[By mid-point theorem]
In $\triangle A D C, R$ and S are the mid-points of $C D$ and DA respectively.
$\therefore S R=12 A C$ and $S R \| A C . .(2)$
[By mid-point theorem]
From (1) and (2), we get
$P Q=12 A C=S R$ and $P Q\|A C\| S R$
$\Rightarrow P Q=S R$ and $P Q \| S R$
\therefore PQRS is a parallelogram
Now, in $\triangle E R C$ and $\triangle E Q C$,
$\angle 1=\angle 2$
[\because The diagonals of a rhombus bisect the opposite angles]
$C R=C Q[\because C D 2=B C 2]$
CE = CE [Common]
$\therefore \Delta \mathrm{ERC} \cong \Delta \mathrm{EQC}$ [By SAS congruency]
$\Rightarrow \angle 3=\angle 4$...(4) [By C.P.C.T.]
But $\angle 3+\angle 4=180^{\circ} \ldots \ldots$. (5) [Linear pair]
From (4) and (5), we get
$\Rightarrow \angle 3=\angle 4=90^{\circ}$
Now, $\angle \mathrm{RQP}=180^{\circ}-\angle \mathrm{b}$ [Y Co-interior angles for $\mathrm{PQ}|\mid \mathrm{AC}$ and EQ is transversal]
But $\angle 5=\angle 3$
[\because Vertically opposite angles are equal]
$\therefore \angle 5=90^{\circ}$
So, $\angle \mathrm{RQP}=180^{\circ}-\angle 5=90^{\circ}$
\therefore One angle of parallelogram PQRS is 90°.
Thus, PQRS is a rectangle.

Question 3.

$A B C D$ is a rectangle and P, Q, R ans S are mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral PQRS is a rhombus.
Solution:
We have,
Now, in $\triangle A B C$, we have
$P Q=12 A C$ and $P Q \| A C$
[By mid-point theorem]
Similarly, in $\triangle A D C$, we have
SR = 12AC and SR \| AC
From (1) and (2), we get
$P Q=S R$ and $P Q|\mid S R$
$\therefore P Q R S$ is a parallelogram.
Now, in $\triangle P A S$ and $\triangle P B Q$, we have
$\angle A=\angle B$ [Each 90°]
$A P=B P[\because P$ is the mid-point of $A B]$
$A S=B Q[\because 12 A D=12 B C]$
$\therefore \triangle \mathrm{PAS} \cong \triangle \mathrm{PBQ}$ [By SAS congruency]
$\Rightarrow P S=P Q$ [By C.P.C.T.]
Also, $P S=Q R$ and $P Q=S R[\because$ opposite sides of a parallelogram are equal]
So, $P Q=Q R=R S=S P$ i.e., $P Q R S$ is a parallelogram having all of its sides equal.
Hence, PQRS is a rhombus.

Question 4.
$A B C D$ is a trapezium in which $A B|\mid D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see figure). Show that F is the mid-point of $B C$

Solution:
We have,

In $\triangle \mathrm{DAB}$, we know that E is the mid-point of
$A D$ and $E G|\mid A B[\because: E F| | A B]$
Using the converse of mid-point theorem, we get, G is the mid-point of $B D$.
Again in $A B D C$, we have G is the midpoint of $B D$ and $G F|\mid D C$.
[$\because A B|\mid D C$ and $E F| \mid A B$ and $G F$ is a part of $E F$]
Using the converse of the mid-point theorem, we get, F is the mid-point of $B C$.
Question 5.
In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see figure). Show that the line segments AF and EC trisect the diagonal BD.
Solution:

Since, the opposite sides of a parallelogram are parallel and equal.
$\therefore \mathrm{AB} \| \mathrm{DC}$
$\Rightarrow A E \| F C$...(1)
and $A B=D C$
$\Rightarrow 12 \mathrm{AB}=12 \mathrm{DC}$
$\Rightarrow A E=F C . .(2)$
From (1) and (2), we have
$A E \| P C$ and $A E=P C$
$\therefore \triangle \mathrm{ECF}$ is a parallelogram.
Now, in $\triangle D Q C$, we have F is the mid-point of DC and FP || CQ
[$\because \mathrm{AF}|\mid \mathrm{CE}]$
$\Rightarrow D P=P Q$.
[By converse of mid-point theorem] Similarly, in A BAP, E is the mid-point of AB and EQ \| AP [$\because \mathrm{AF}|\mid \mathrm{CE}]$
$\Rightarrow B Q=P Q$
[By converse of mid-point theorem]
\therefore From (3) and (4), we have
$D P=P Q=B Q$
So, the line segments AF and EC trisect the diagonal BD.

